VZO 15...50

Datos técnicos¹⁾

- Display de volumen en litros
- Contador con extremos roscados o brida
- Montaje en posición horizontal, vertical o inclinada

Opción: Réle Reed o RV / IN emisor

Versiones disponibles si se solicitan:

- Bridas según normas ANSI, JIS
- Galones EE.UU.2) (opcional)

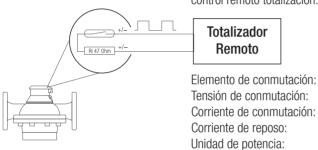
Tipo			VZO 15	VZO 20	VZO 25	VZO 40	VZO 50
Diámetro nominal	DN	mm	15	20	25	40	50
		pulgadas	1/2	3/4	1	11/2	2
Cota de instalación		mm	165	165	190	300	350
Presión nominal conexión rosca	PN	bar	16				
conexión brida DIN	PN	bar	25, 40				
Temperatura máxima	Tmax	° C	130, 180				
Caudal máximo	Qmax ³⁾	l/h	600	1500	3 000	9 000	30 000
Caudal nominal	Qcont ³⁾	l/h	400	1 000	2 000	6 000	20 000
Caudal mínimo	Q_{min}	l/h	104)	30	75	225	750
Caudal de arranque aprox.		l/h	4	12	30	90	300
Error máximo			±1% del v	alor real			
Repetibilidad			±0.2%				
Malla filtrante de seguridad		mm	0.400	0.400	0.400	0.800	0.800
Malla filtrante de contador		mm	0.250	0.400	0.400	0.600	0.600
Volumen de la cámara		aprox.cm ³	12	36	100	330	1 200
Acabado			esmaltado	en rojo RAL 3	8013		
Peso conexión rosca ⁴⁾		aprox. kg	2.2	2.5	4.2	17.3	_
conexión brida PN 25		aprox. kg	3.8	4.5	7.5	20.3	41.0
conexión brida PN 40		aprox. kg	4.4	5.5	7.8	20.5	42.0
Lectura mínima			0.01	0.1	0.1	0.1	1
Capacidad de registro		m^3	1 000	10 000	10 000	10 000	100 000
Registro hasta el momento en que Qcont rebasam	niento a cero	h	2 500	10 000	5 000	1 667	5 000
Valores del contador con impulsos							
Según IEC 60947-5-6		l/pulso	0.01	0.01	0.1	0.1	1
Relé RV Reed		l/pulso	0.1	1	1	1	10
Relé RV Reed		l/pulso	1	_	_	10	100
							0.000
Frecuencia de pulso	Qmax	Hz	16.667	41.667	8.333	25.000	8.333

Curvas de perdida de carga

Consulte pág. 22

Las especificaciones, válidas por el fabricante para las condiciones de referencia como se especifica en el "Índice: Los datos del medidor".
 1 galón EE.UU. corresponde a 3.785 litros
 En los quemadores y motores, el contador se debe seleccionar sobre la base de la tasa de caudal nominal. Para una mayor viscosidad, o si el medidor está instalado en el lado de aspiración, la caída de presión y cualquier reducción en la medición debe ser tenida en cuenta.

 ⁴⁾ Mínimo. caudal VZO 15 con EN-emisor: 15 l / h
 5) El peso sin acoplamientos


Dimensiones en mm

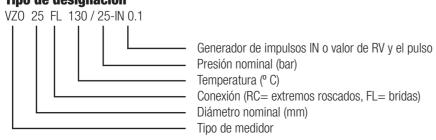
Tipo	mm	VZO 15	VZO 20	VZO 25	VZ040	VZ0 50
	Longitud	165	165	190	300	350
	Ancho	105	105	130	210	280
	Tipo130	° C				
	Altura	106	115	142	235	291
	Altura-RV	130	139	166	259	315
 	Altura-IN	185	194	221	273	329
AM006216.4	Tipo180	° C				
Aw Aw	Altura	147	156	183	235	291
	Altura-RV	171	180	207	259	315
	Altura-IN	225	234	261	313	369

Detallados diagramas de dimensiones en el "Índice: Los datos del medidor"

Salidas de RE

Este tipo de emisor se integra en el rodillo y por lo tanto es especialmente apropiado para el control remoto totalización. Para otras aplicaciones del emisor IN inductivo es más adecuado.

- El interruptor de láminas con contacto seco (gas inerte)
- Máx. 48 VAC/DC, protección de clase III (SELV)
- Máx. 50 mA (Ri = 47 $\Omega/0.5$ W)
- Abrir contacto
- Máx. 2 W
- 50% ±10%
- Ambient -10 ... +70 °C
- IP 65 (IEC 60529) contra el polvo y chorros Clase de protección: Conexiones:
 - Reparto en cable, longitud 3 m
- Sección del cable: • 2 x 0.14 mm²


Salidas de IN

Pulsador para aplicaciones industriales. Se suministra con el plug-in sensor de impulsos

- Iniciador ranura Inductiva según IEC 60947-5-6
- 5...15 VDC
- Máx. 5%
- >3 mA a 8 VDC / 1 k Ω
- \bullet <1 mA a 8 VDC / 1 k Ω
- $50\% \pm 10\%$
- -10...+70°C
- IP 65 (IEC 60529) contra el polvo y chorros
- Pulsador suministrado con el enchufe especial. Mín. cable necesario 2 x 0.35 mm² y 4...6 mm de diámetro exterior o el cable ya está montado si la opción "Código: 80019" se elige.
- Cable o montados, 2 x 0.5 mm², PVC negro, longitud 3 m (Código: 80019)

Tipo de designación

Conexiones:

Opción:

A tiempo:

Temperatura:

Especificaciones

Extremo roscado, PN 16	Tipo 130 ° C	Código	Tipo 130 ° C	Código
	VZO 15 RC 130/16	92041	VZO 25 RC 130/16	92057
	VZO 15 RC 130/16-RV 0.1	92042	VZO 25 RC 130/16-RV 1	92058
	VZO 15 RC 130/16-RV 1	92043	VZO 25 RC 130/16-IN 0.1	91913
	VZO 15 RC 130/16-IN 0.01	91900		
4.91	VZO 20 RC 130/16	92047	VZO 40 RC 130/16	92004
AM066216.4	VZO 20 RC 130/16-RV 1	92048	VZO 40 RC 130/16-RV 1	92018
	VZO 20 RC 130/16-IN 0.01	91902	VZO 40 RC 130/16-IN 0.1	91906
ridos DN 25	Ting 120 0 C	Cádigo	Tino 120 0 C	Cádigo
ridas, PN 25	Tipo 130 ° C	Código	Tipo 130 ° C	Código
	VZO 15 FL 130/25	92044	VZO 40 FL 130/25	92005
	1/70 4 F FL 400/0F DV 0 4	00045	1/70 40 EL 400/0E DV 4	00000
	VZO 15 FL 130/25-RV 0.1	92045	VZO 40 FL 130/25-RV 1	92020
	VZO 15 FL 130/25-RV 0.1 VZO 15 FL 130/25-RV 1	92045 92046	VZO 40 FL 130/25-RV 1 VZO 40 FL 130/25-IN 0.1	92020 91907
	VZO 15 FL 130/25-RV 1	92046		
	VZO 15 FL 130/25-RV 1 VZO 15 FL 130/25-IN 0.01	92046 91910	VZO 40 FL 130/25-IN 0.1	91907
P 9000018 4	VZO 15 FL 130/25-RV 1 VZO 15 FL 130/25-IN 0.01 VZO 20 FL 130/25	92046 91910 92049	VZO 40 FL 130/25-IN 0.1 VZO 50 FL 130/25	91907
AMNOSZI 8-4	VZO 15 FL 130/25-RV 1 VZO 15 FL 130/25-IN 0.01 VZO 20 FL 130/25 VZO 20 FL 130/25-RV 1	92046 91910 92049 92050	VZO 40 FL 130/25-IN 0.1 VZO 50 FL 130/25 VZO 50 FL 130/25-RV 10	91907 92007 92024
AMD68218.4	VZO 15 FL 130/25-RV 1 VZO 15 FL 130/25-IN 0.01 VZO 20 FL 130/25 VZO 20 FL 130/25-RV 1 VZO 20 FL 130/25-IN 0.01	92046 91910 92049 92050 91903	VZO 40 FL 130/25-IN 0.1 VZO 50 FL 130/25 VZO 50 FL 130/25-RV 10	91907 92007 92024

Bridas, PN 25	Tipo 180 ° C	Código	Tipo 180 ° C	Código
	VZO 15 FL 180/25	92250	VZO 40 FL 180/25	92274
	VZO 15 FL 180/25-RV 0.1	92251	VZO 40 FL 180/25-RV 1	92275
	VZO 15 FL 180/25-RV 1	92252	VZO 40 FL 180/25-IN 0.1	92276
	VZO 15 FL 180/25-IN 0.01	92253		
	VZO 20 FL 180/25	92258	VZO 50 FL 180/25	92280
	VZO 20 FL 180/25-RV 1	92259	VZO 50 FL 180/25-RV 10	92281
W0066218.4	VZO 20 FL 180/25-IN 0.01	92260	VZO 50 FL 180/25-IN 1	92282
AMC	VZO 25 FL 180/25	92264		
	VZO 25 FL 180/25-RV 1	92265		
	VZO 25 FL 180/25-IN 0.1	92266		

Bridas, PN 40	Tipo 180 ° C	Código	Tipo 180 ° C	Código
	VZO 15 FL 180/40	92254	VZO 40 FL 180/40	92277
	VZO 15 FL 180/40-RV 0.1	92255	VZO 40 FL 180/40-RV 1	92278
	VZO 15 FL 180/40-RV 1	92256	VZO 40 FL 180/40-IN 0.1	92279
	VZO 15 FL 180/40-IN 0.01	92257		
	VZO 20 FL 180/40	92261	VZO 50 FL 180/40	92283
	VZO 20 FL 180/40-RV 1	92262	VZO 50 FL 180/40-RV 10	92284
	VZO 20 FL 180/40-IN 0.01	92263	VZO 50 FL 180/40-IN 1	92285
- WANDE	VZO 25 FL 180/40	92267		
	VZO 25 FL 180/40-RV 1	92268		
	VZO 25 FL 180/40-IN 0.1	92269		

DN 15 sólo cuando la planta tiene un filtro de suciedad con un máx. 0,1 mm de luz de malla.

Modificación VZF	Para la homologación de marinos (ejem. GL, LRS, DNV)	96295
Opción / Accesorios	Cable montado en IN	80019

Accesorios

	Tipo	Descripción	Código
Conexiones roscadas	VSR 1/2"	para DN 15	81160
_	VSR 3/4" x 1/2"	para DN 20	81163
	VSR 3/4"	para DN 20	81166
	VSR 1"	para DN 25	81169
	VSR 11/2"	para DN 40	81181
Kit de conexiones roscadas	PS-Kit VZO 4	1/8" – 8	81583
56595.b			
Kit de montaje	PS-Kit VZO 8	Kit de montaje	81130
565002e	VSR 3/8"	Conexiones roscadas para adaptarse PS-Kit VZO 8	81156

Equipamiento complementario

	Tipo	Descripción	Código
Totalizador remoto	CP 2 2293	Totalizador, la reducción a cero seleccionable	94504
AM066015.4			
Separación de zona	Ex version	con salida de relé, máx. 10 Hz	81705
	Ex version	con salida de relé, máx. 5 kHz	80013

	Tipo	Descripción	Código
Transmisor	Cálculo de flujo	Programable, con salida analógica	92439
⊕ ⊕		420 mA, indicación de caudal, valores límites	
	Cálculo del flujo	Programable, con salida analógica	92440
	diferencial	420 mA, indicación de caudal, valores límites	
		Ambas entradas se pueden leer de forma individual	
(a)	Frecuencia convertidor de caudal	Programables	92439
Kit de montaje	Kit	para montaje en pared o carril DIN-35 mm	a consultar

Datos del medidor

Función

El principio de trabajo de los contadores CONTOIL® volumétricos es mediante pistón rotativo (medidores de desplazamiento positivo). Las principales características de este principio de medición son los rangos de gran medida, alta precisión, idóneos para la alta viscosidad y la independencia de la fuente de alimentación; las perturbaciones del flujo no influyen en el adecuado funcionamiento.

Construcción

El pistón rotativo y placa guía son las únicas partes moviles en contacto con el líquido. Su movimiento se transmite mediante un acoplamiento magnético através de una placa sellada. La parte hidráulica está completamente separada del módulo de totalización.

VZF/VZFA 15 ... 50

Las conexiones se realizan radialmente con dos entradas de cables por debajo de la unidad de lectura que se puede montar y girar en pasos de 90°.

VZO/VZOA 15 ... 50

Con la excepción del contador con el pulsador RV Reed, el contador de rodillos puede girar 360° para una lectura óptima.

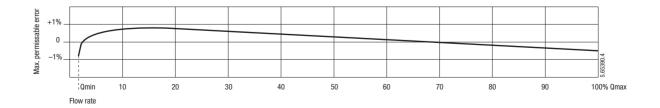
VZO/VZOA 4 v 8

Las conexiones para la entrada y salida son verticales y paralelas en la placa base. En la versión OEM las conexiones son lineales en los laterales.

Medición de los límites de error: Condiciones de referencia

Error límite de medición de acuerdo a los datos técnicos del contador en % de valor real para el rango de medición.

Condiciones de referencia


Líquido: Calibración con aceite similar al combustible de calefacción, la densidad del petróleo a 20 °C = 814 kg/m³

Viscosidad = 5.0 mm²/s según la norma DIN 51757 / ISO 3104 (corresponde a 4.1 mPa.s)

Temperatura: 18...25 °C

Para la lectura del contador, montaje horizontal.

Los contadores CONTOIL® únicamente son válidos para hidrocarburos, la presencia de agua daña los mecanismos.

Curvas de perdida de carga

Información viscosidad

Viscosidad cinemática
Stokes, Centi-Stokes, mm²/s
Viscosidad dinámica
Pascal segundos, milipascal segundos
Poise, Centipoise (obsoleto)
St, cSt, mm²/s
Pas, mPa.s
Poise, Centipoise (obsoleto)
P, cP

Conversión $cSt \times densidad = mPa.s$

Engler degrees °E de la mPa.s: sólo usar tabla de conversión Saybolt unidades mPa.s: sólo usar tabla de conversión Redwood unidades mPa.s: sólo usar tabla de conversión

Regla de oro 1 cSt \rightarrow 1 mm2/s \rightarrow 1 mPa.s

DN 4 DN 8

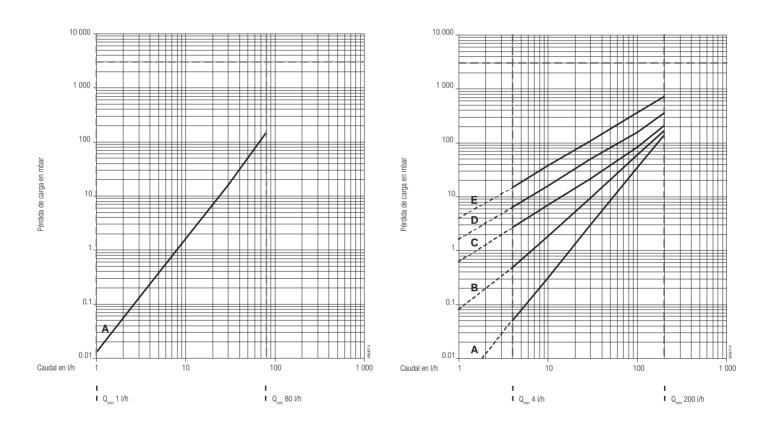
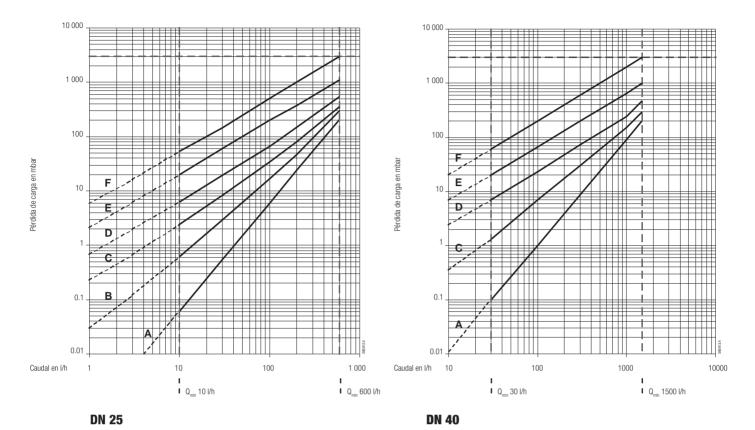
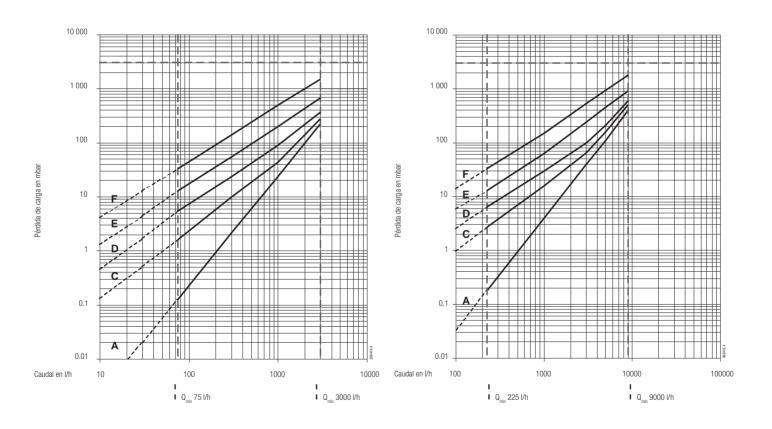




Diagrama de viscosidad: A=5 mPa.s C=100 mPa.s E=500 mPa.s D=200 mPa.s

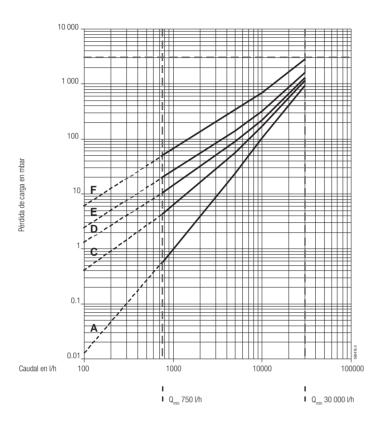
Para una caída de presión de más de 1 bar, se recomienda utilizar una talla superior del contador. Caída de presión máxima admisible = 3 bar

DN 15 DN 20

C= 50 mPa.s

D= 100 mPa.s

E= 200 mPa.s


D= 500 mPa.s

Para una caída de presión de más de 1 bar, se recomienda utilizar una talla superior de contador. Caída de presión máxima admisible = 3 bar

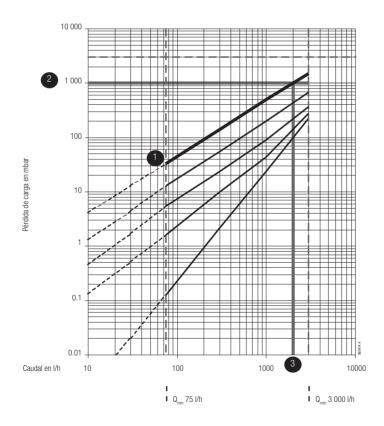
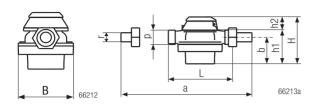

A=5 mPa.s B=25 mPa.s

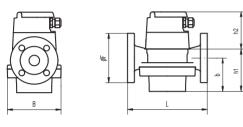
Diagrama de viscosidad:

DN 50

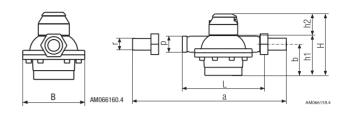
Ejemplo

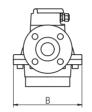

El aceite mineral, la viscosidad 450 mPa.s VZO 25 montado en el lado de la presión de las bombas

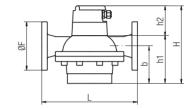
- Viscosidad curvas DN 25
 Seleccionar la curva más cercana
 F = 500 mPa.s
- 2. Supone máx. caída de presión admisible= 1 bar
- 3. La intersección de la curva F con la línea correspondiente a 1 bar ofrece un caudal de 2.000 l/h


Dimensiones en mm

VZO / VZF


DN 15, 20, 25: con extremos roscados (ISO 228-1)

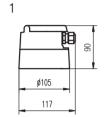

DN 15, 20, 25: con bridas (DIN 2501/SN 21843)



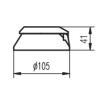
DN 40: con extremos roscados (ISO 228-1)

DN 40, 50: con bridas (DIN 2501/SN 21843)

Tamaño Nominal	L	В	а	ØF	b	h1	р	r
DN 15	165	105	260	95	45	65	G ¾"	G ½"
DN 20	165	105	260	105	54	74	G 1"	G ¾"
DN 25	190	130	305	115	77	101	G 1¼"	G 1"
DN 40	300	210	440	150	116	153	G 2"	G 1½"
DN 50	350	280	_	165	166	209	_	_

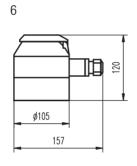

Dimensiones de los contadores y tipos de displays

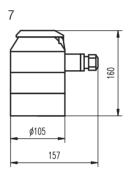
Modelo	VZF / VZFA	VZ	0 15 -	25				VZ) 40 -	- 50 /	vz0	A 15	- 50
Temperatura máxima	130/180°C	130	O°C		180)°C		130)°C		180)°C	
Pulsadores	todo	-	RV	IN	-	RV	IN	-	RV	IN	-	RV	IN
Plano de dimensiones	1	2	3	6	5	4	7	5	4	6	5	4	7

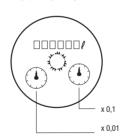

3

VZF (A), VZO (A) Plano de dimensiones 1 a 7 de la tabla anterior

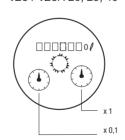
2

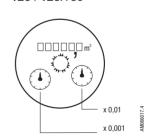

5





Tipos de Display


VZF / VZFA


VZ0 / VZ0A 15

VZO / VZOA 20, 25, 40

VZO / VZOA 50

Selección del medidor óptimo

Tipo		VZF	VZO	VZO	VZFA	VZOA	VZOA
10.0		15-50	4-8	15-50	15-50	4-8	15-50
Aplicación				10 00			
Consumo directo de medición							
Medición diferencial		_	_	_		_	
Puntos de medición con aprovación metr	olog. y calibración (opcional)	_	_	_	_		
Puntos de medición con la aprovación de			_			_	
La mayoría de las zonas de uso fre							
Quemadores Domésticos / Industriales	ligero / medio						
	fuel pesado ¹⁾	•	_			_	
Motor Diesel	gasóleo	•					
Motor de barcos	fuel pesado ¹⁾	•	_			_	
Motor de Gasolina			2)			_	
Aplicaciones comunes							
Sistemas de calefacción							
Buques							
Locomotoras Diesel							
Camiones / coches / maquinaria de cont	rucción			•			•
Tipos de combustibles							
Fuel ligero							
Fuel medio		•					
Fuel pesado		•	_			_	
Gasóleo							
Gasolina ²⁾			2)				
Display de lectura							
Volumen total							
Volumen reajustable			-	_		_	_
Caudal instantáneo		•	_	_	•	_	_
Método de la pantalla					_		
LCD de pantalla electrónica		•	_	_		_	_
Visualización del volumen total en el rodi	lo contra		•	•		•	•
Medición de los límites de error							
±1 % si el valor real		•			_		_
±0,5 % del valor real o menor	Olasa d	_	_	_		_	
Aprobación PTB	Clase 1	_	_	_		DN 4	
Homologación / Verificación EC	Clase 1	_	_	_	_	DN 4	_
Salidas ⁴⁾	Clase 0.5				_	DN 8	
Salidas ³ Salida de corriente	4 20mA						
Salida digital	420mA volumen pulsos		_	_		_	_
Janua uigitai	frecuencia de señal		_	_		_	_
	limite de valores máx. / mín.		_	_		_	_
Emisores (Opcional)	minite de valores máx. / mm.	•	_	_		_	_
Inductivo, con un valor decimal de pulso							
Reed emisor de totalización a distancia		_	_		_	_	
need emisor de totalización a distancia					_		

Aplicable No aplicable

Combustibles adecuados	DN 4	DN 8	DN 15	DN 20	DN 25	DN 40	DN 50
Medidor de tamaños							
Fuel ligero	•	•	•	•	•	•	•
Fuel mediano	•		•				•
Fuel pesado	_	_	3)				•
Gasóleo	•						•
Gasolina	2)	2)	_	_	_	_	_

Sólo de acuerdo con el tamaño de malla máximo de la suciedad del filtro según datos técnicos
 Determinar las condiciones de uso con el proveedor (jotros valores medidos!)

Nota de aplicación

Para viscosidades superiores a 5 mPa.s o para instalaciones en el lado de aspiración hay que tener en cuenta la límitación del rango de caudal por la perdida de carga de la bomba.

DN 15 sólo cuando la planta tiene un filtro de suciedad con un máx. 0,1 mm de luz de malla.
 Dos salidas independientes de libre elección siempre están disponibles

Los aceites combustibles

Características de los diferentes combustibles

Combustible				extra ligero	ligero	medio	pesado	Bunker C
Densidad a 15°C	,	mín.	kg/dm³	0.82	0.82	0.82	0.82	0.90
		máx.	kg/dm³	0.86	0.95	0.96	0.99	1.01
Volumen específi	co de densidad media		l/kg	1.19	1.12	1.12	1.11	1.08
Viscosidad a	20° C		mPa.s	8	14	50	420	4200
	40° C		mPa.s	3	5	16	60	380
	100° C		mPa.s			3	10	35
Valor de energía		•	kWh/kg	11.8	10.6	11.4	11.2	11.0

Los valores indicativos de potencia para quemadores y motores Quemadores

Quemadores	Aceite combustible metros							
Potencia hasta kW	Caudal de combustible de calefacción		Caudal	Tamaño				
	kg/h	l/h	QminQcont I/h	DN				
500	42	50	1 50	4				
1 300	113	135	4 135	8				
4 000	336	400	10 400	15				
10 000	840	1 000	30 1 000	20				
20 000	1 680	2 000	75 2 000	25				
60 000	5 040	6 000	225 6 000	40				
200 000	16 800	20 000	750 20 000	50				

Fórmula para el consumo en l/h:	Ejemplo:			
Quemador de potencia en kW	600 kW	- = 62 l/h		
Valor energético del combustible en kWh/kg x densidad en kg/dm³	11.8 kWh/ka x 0.82 ka/dm³	— = 02 1/11		

Motores

Motor	Aceite combustible metros ¹⁾				
Potencia hasta	Consumo de combustible gasóleo		Caudal	Tamaño	
aprox. PS	ca. kW	l/h	QminQcont I/h	DN	
250	184	50	1 50	4	
680	500	135	4 135	8	
2 000	1 470	400	10 400	15	
5 000	3 680	1 000	30 1 000	20	
10 000	7 360	2 000	75 2 000	25	
30 000	22 000	6 000	225 6 000	40	
100 000	73 600	20 000	750 20 000	50	

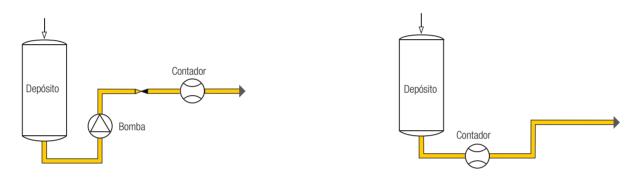
¹⁾ Para la medición del medidor de flujo diferencial tiene que ser seleccionados de acuerdo al caudal de la bomba y el flujo en la tubería de retorno.

Formula: $1 \text{ HP} = 0.736 \text{ kW} \qquad 1 \text{ kg Diesel a } 0.84 \text{ kg/dm}^3 = 1.19 \text{ l}$

1 kW = 1.36 HP

Reglas de oro: aprox. 190 g/kWh corresponde a 0.226 l/kWh aprox. 140 g/HP corresponde a 0.167 l/HP/h

Cómo obtener una medición óptima

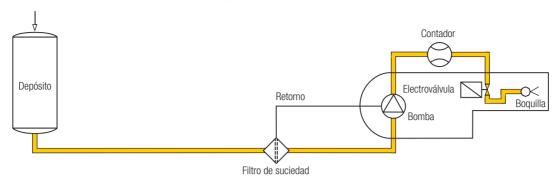

Planificación

Los contadores son instrumentos de medición de precisión. Logran resultados óptimos si:

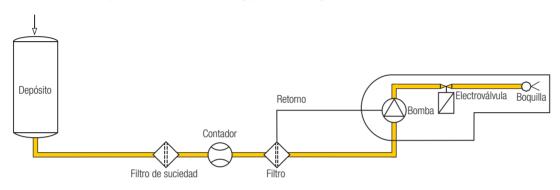
- Se obtienen resultados óptimos cuando previamente se tiene en cuenta el diseño de la instalación,
- Cuidando el montaje y la puesta en marcha,
- Los medidores sólo son utilizados para el trabajo que han sido diseñados.

Diseño de Tuberías

- Las cantidades consumidas deben ser registradas por el medidor.
- Los contadores de pistón rotatorio no requieren acondicionadores de flujo o función de entrada (después de las curvas, T-piezas o accesorios). Se puede montar en horizontal, posición vertical o inclinada, excepto con la cabeza hacia abajo.
- El diseño de las tuberías debe asegurarse de que el contador está en todo momento lleno de líquido y que no entra aire o gas que puede ocurrir. **No instale el contador en el punto más alto de la instalación.**
- El contador y accesorios deben ser de fácil acceso.


La selección del contador y accesorios

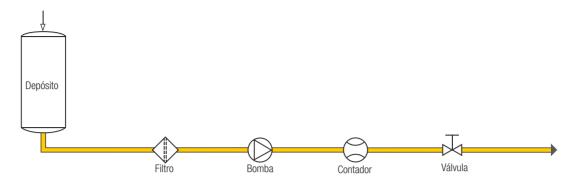
Hay que tener en cuenta para seleccionar el contador:


- Temperatura de funcionamiento
- · Viscosidad del fluido
- Presión de trabajo
- Caudal
- La resistencia del material contra el combustible que se mide y las condiciones de trabajo

Los datos técnicos son válidos para las condiciones de referencia siguientes: EL combustible de calefacción y diesel a 20°C. Para mayores viscosidades o si el contador se monta en el lado de aspiración de una bomba, es necesario determinar la caída de presión y el caudal que aún se puede lograr mediante el uso de las curvas de pérdida de presión (página 25ff). Si la caída de presión es más que un bar, se recomienda utilizar una talla superior del medidor. Máxima admisible = caída de presión de 3 bares.

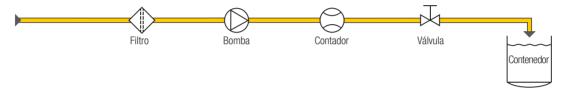
Montaje en el lado de presión de la bomba (quemadores)

Montaje en el lado de aspiración de la bomba (quemadores)


Las impurezas en la instalación o el combustible

En caso de impurezas presentes en la instalación o en el combustible, el filtro de suciedad tiene que estar instalado antes que el contador. El filtro montado en la entrada del contador es sólo un filtro de seguridad y es demasiado pequeño para que actúe como filtro de suciedad.

Máximo tamaño de malla de filtro de suciedad	Medida	VZF	VZ0	VZFA/VZ0A
	DN 4	_	0,080 mm	0.080 mm
	DN 8	_	0.100 mm	0.100 mm
<i>₹</i> H <i>₹</i> H 3	DN 15	0.250 mm	0.250 mm	0.100 mm
	DN 20	0.400 mm	0.400 mm	0.100 mm
5 688	DN 25	0.400 mm	0.400 mm	0.250 mm
• •	DN 40	0.600 mm	0.600 mm	0.250 mm
	DN 50	0.600 mm	0.600 mm	0.250 mm


Válvulas de cierre

A fin de evitar el reflujo y el drenaje, las válvulas de cierre tiene que estar montadas después del contador. El reflujo y el drenaje provocan errores de medición y puede dañar el contador.

Llenado y dosificación

Para llenar y dosificar la válvula se debe montar entre el contador y la salida. **Cuanto más corto sea el tramo de tubería entre el contador y la salida, mayor es la precisión**. La rápida apertura y cierre de la válvula debe ser evitado (golpe de ariete).

Procesamiento remoto / Auxiliares

Cualquier reflujo se debe evitar en los contadores equipados con emisor. Si esto no fuese posible por las características de la instalación, se deberá colocar una válvula de retención.

Cableado e instalaciones eléctricas

El cableado eléctrico y las instalaciones están sujetas a las regulaciones legales que se deben tener en cuenta al planificar la instalación. Para las instalaciones en zonas con riesgo de explosión, consultar a un experto apropiado.

Los siguientes factores deben ser tenidos en cuenta durante el diseño de la instalación:

- Auxiliares conectados al contador
- Interferencias ambientales
- Longitud máxima admisible del cable (con o sin amplificador)
- Cajas de conexiones, guías de cable

Longitud de cable en las salidas del contador VZF

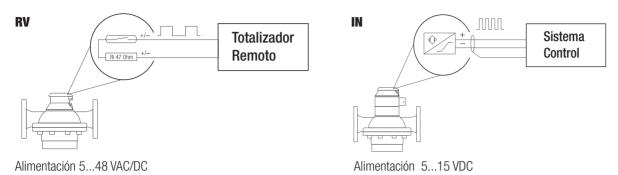
Un cable con diámetro de 0,5 mm es generalmente adecuado hasta 25 metros y de 0,8 mm hasta 100 m. En los demás casos la limitación factores deben ser considerados.

- para la salida analógica de corriente: (4...20 mA)

Los factores limitantes son la tensión de alimentación (U) y la resistencia de la carga (RL). Para garantizar la señal de corriente máxima de 21,5 mA con suficiente tensión de servicio al contador se utiliza la siguiente fórmula para calcular la resistencia máxima admisible (RL), que consiste en la la resistencia del cable más la resistencia de otros componentes dentro del circuito. Conocer la resistencia de los otros componentes, permite calcular la máxima longitud admisible del cable.

$$RL = \frac{(U-5) \text{ V}}{0.0215 \text{ A}}$$
 Ejemplo: $(24-5) \text{ V}$ 19 V Tensión Alimentación $RL = \frac{(24-5) \text{ V}}{0.0215 \text{ A}} = \frac{19 \text{ V}}{0.0215 \text{ A}} = \frac{883 \Omega}{0.0215 \text{ A}}$

- para la salida de relé de semi conductores: (pulsos de volumen, frecuencia de la señal, final de carrera)


Los factores limitantes dependen del tipo de entrada del sistema más alto o el totalizador. La capacidad de la entrada para detectar el estado real del interruptor está especificado por el fabricante del sistema.

Para el relé interruptor de un máximo de 100 Ω en el estado-ON tiene que ser considerada junto con la resistencia del cable. Un mínimo de 10 millones de Ω en OFF-estado tiene que ser considerada junto con la capacidad del cable. La longitud máxima admisible del cable depende de las propiedades individualmente de resistencia y capacidad.

Salidas IN y RV

Fuente de alimentación

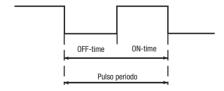
Nuestra gama de productos incluye salidas pasivas para el procesamiento remoto de datos de caudal. El emisor genera un pulso por unidad de volumen y se entregará con la energía del dispositivo de salida de impulsos.

La selección del generador de impulsos adecuado

La selección del generador de impulsos más adecuado y el valor del pulso depende de la aplicación. Por regla general, la totalización remota a distancia demanda bastante cantidad de impulsos, mientras que las señales analógicas, control de la dosificación o la indicación de la tasa de flujo real tienden a necesitar los valores pequeños. La batería suministrada junto con los dispositivos sólo se puede utilizar junto con pulsadores de Reed.

Selección del dispositivo de proceso

La longitud del pulso depende de la tasa de caudal. El contacto continuo puede resultar en caudal cero. El dispositivo conectado por lo tanto debe ser capaz de aceptar carga continua, de lo contrario, deberan ser tomadas medidas de protección. Para totalizador remoto, se recomienda utilizar un contador de pulso electrónico con un bajo consumo de energía y filtro.


Correcto procesamiento de impulsos

La interrupción del flujo puede causar la oscilación hidráulica del líquido en ciertas instalaciones (vibración hidráulica con un mínimo de atrás / adelante de flujo). Los pulsos que se dan en estos casos se pueden interpretar como el flujo hacia adelante por el dispositivo conectado. Tales pulsos defectuosos no afectan a la indicación del valor real, ya que sólo puede ocurrir a casi cero de flujo. Sin embargo, si el pulsador controla un dispositivo de cuenta, la vibración hidráulica debe evitarse con una modificación adecuada o el diseño de la instalación.

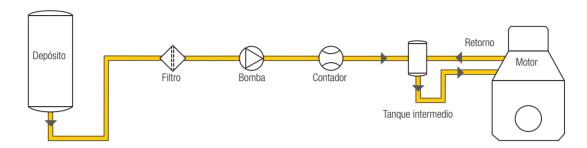
Valores del pulso

Los valores del pulso depende del tipo y tamaño nominal del medidor. Se describen en la información técnica del contador seleccionado.

Periodo del pulso

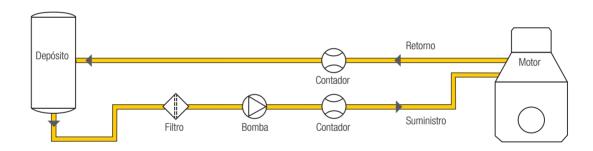
Longitud del pulso, así como dentro y fuera de tiempo se puede calcular con la siguiente fórmula:

Longitud del pulso en el s $= \frac{\text{pulso de valor en litros x 3600}}{\text{caudal Q en I/h}}$ On-time $= \frac{\text{Long. del pulso en el s x on-time en \% Long. del pulso}}{100}$ Off-time = Long. del pulso s menos on-time


Se recomienda que este cálculo se lleve a cabo con el caudal mínimo y el caudal máximo.

Ejemplos de aplicación

Motor Diesel

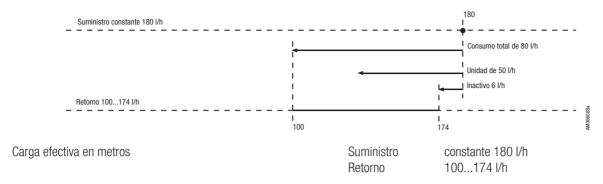

Medición directa de consumo

En lugar de devolver el combustible de vuelta al tanque principal, se debe instalar un depósito intermedio equipado con un intercambiador de calor en el suministro del sistema. La medición del caudal se realiza en el tubo de alimentación al tanque intermedio. La lectura dle contador corresponde exactamente al consumo.

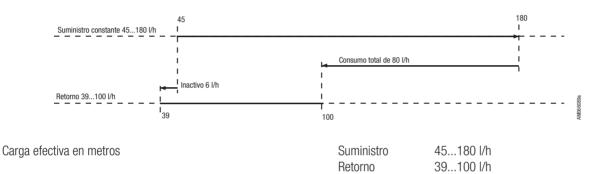
Mediciones diferenciales

Para las mediciones diferenciales, la tubería se mantiene sin cambios, con retorno al tanque. Un contador de caudal se instala en la tubería de suministro y otro en la de retorno. El consumo se calcula entre la diferencia de caudal de la tubería de suministro y retorno.

Razones para el uso de medidores especiales para mediciones diferenciales

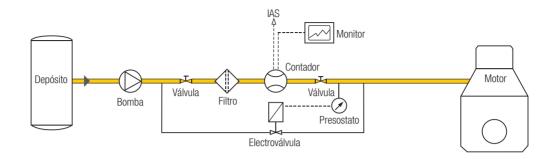

Los contadores estándar cuentan con un amplio rango de medición y un máximo margen de error permitido de ± 1%. Esto los hace inadecuados para mediciones diferenciales, como muestra el siguiente ejemplo:

A plena carga	Suministro	400 l/h	Error ±1 %	= nominal ± 4.0 l		
	Retorno	150 l/h	Error ±1 %	= nominal ± 1.5 l		
	Consumo 250 l/h Divergencia = nominal Máxima divergencia Consumo = 5.5 3 100 : 250 = ±2.2 %					
Mín. carga	Suministro	400 l/h	Error ±1 %	= nominal $\pm 4.0 \text{ I}$		
	Retorno	360 l/h	Error ±1 %	= nominal $\pm 3.6 \text{ I}$		
	Consumo Máxima diverç Consumo = 7	•	Divergencia = ±19 %	= nominal ±7.6 l		

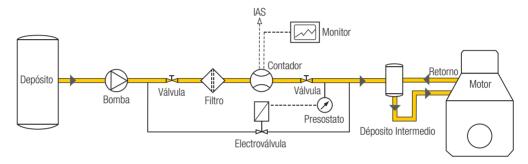

Para un resultado óptimo, por lo tanto, se utilizan los contadores especiales para realizar mediciones diferenciales. Estos son, precisamente, adaptados a las condiciones de funcionamiento y se calibran por parejas. Esto significa que el error de medición puede reducirse significativamente (por ejemplo: \pm 0,1% a caudales constantes en el lado del suministro y de \pm 0.3%, con caudales ligeramente variables en el lado de retorno).

Cargas en metros

Ejemplo: Potencia del motor 500 CV del vehículo, con bomba eléctrica

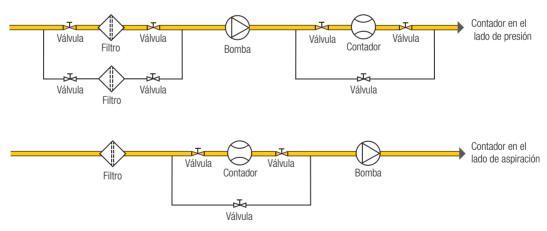


Ejemplo: Potencia del motor 500 CV del vehículo, con velocidad de revolución de la bomba depende 1:4



Medición del consumo en los buques

En los buques, se debe garantizar que el motor pueda funcionar a plena potencia, incluso si el filtro está obstruido o si el contador está dañado. A traves del un bypass con salida de alarma el motor puede funcionar temporalmente sin medición de consumo.



La válvula solenoide se abre cuando la presión cae por debajo de un nivel definido.

El control o la válvula de flotador en el tanque intermedio es necesario. La formación de gas se debe evitar. La electroválvula se abre tan pronto como la presión cae por debajo de un nivel definido. Para medir el consumo de más de un motor, cada uno de ellos requieren una instalación independiente similares a la anterior.

Instalación de medidor en el lado de aspiración de la bomba

Si el contador está instalado en el lado de aspiración de la bomba, hay que tener en cuenta la velocidad, viscosidad y filtros para el calculo de la perdida de carga.